
PHYSICAL REVIEW E, VOLUME 65, 021901
Noise-induced effects on period-doubling bifurcation for integrate-and-fire oscillators

Takashi Tateno*
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka-shi, Osaka 560-8531, Japan

~Received 31 August 2000; revised manuscript received 16 July 2001; published 9 January 2002!

This study provides a method for calculating first-order approximations of the Lyapunov exponents of
systems with discontinuity in the presence of noise in order to characterize the stability of motions in those
systems. This paper in particular illustrates the results of the ways in which noise influences period-doubling
bifurcation in the parameter space of an integrate-and-fire model with a periodically modulated reset level. For
evaluating a stochastic version of period-doubling bifurcation, the first-passage-time problem of the Ornstein-
Uhlenbeck process is used to define a Markov operator governing the transition of a reset-level phase density.
The results on the stochastic bifurcation are thus compared with numerical computations of angles and moduli
of eigenvalues of the Markov operator that describes the firing properties of the model.
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I. INTRODUCTION

Nonlinear systems perturbed by noise have the poten
to display a wide range of nontrivial and complex pheno
ena. This range includes the enhancement of order in
system as well as the destabilization of the system’s beha
@1#. The theoretical and numerical study of random dyna
cal systems has been receiving a lot of attention in rec
years@2#, and notable examples of noise-induced phenom
that have been investigated include stochastic resonance@3#,
noise-induced order@4#, and noise-induced chaos@5,6#.

Noise-induced chaos was first observed in the behavio
a driven nonlinear oscillator@5# and was later studied usin
the noisy logistic map@4,6#. The main finding of these stud
ies was that intrinsic noise truncates the period-doubling c
cade to chaos. That is, the periodic motions with high peri
of the noise-free systems are replaced by chaoslike mot
when noise is added. Period-doubling bifurcation in the p
sense will not always appear in physical systems becaus
presence of noise will alter the original bifurcation. Since t
period-doubling route to chaos is characteristic of nonlin
dynamical systems, we have asked how is it that the c
plete period-doubling cascade is suppressed or maske
noise?

Oseledec has proposed that the attractors of fin
dimensional nonlinear dynamical systems can be chara
ized by values called Lyapunov characteristic numbers
Lyapunov exponents@7#. Calculating the Lyapunov expo
nents of ‘‘smooth’’ dynamical systems is a well-develop
subject on which a lot of literature is available@8#, but in
many fields we also need to consider ‘‘nonsmooth’’ dynam
cal systems with discontinuities. For example, an algorit
for ‘‘smooth’’ dynamical systems is not directly applicable
machine dynamics that are due to impulses or to integr
and-fire oscillations that are due to a threshold process.

Müller has presented a model-based algorithm for ca
lating the Lyapunov exponents of dynamical ‘‘nonsmoot
systems with discontinuities@9#. In the present work we ex
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tend that method to noisy systems and use the metho
characterize the stability of nonsmooth dynamical system
the presence of additive noise. We are thus able to prese
method for obtaining a first-order approximation of th
Lyapunov exponents of such systems.

This paper focuses on the simplest and most widely st
ied model of biological oscillators, the integrate-and-fire~IF!
oscillator @10#. This model captures some of the spikin
properties of a neuron and was constructed according
phenomenological approach with the intention of match
the basic behavior displayed by the biologically realis
Hodgkin-Huxley model@11,12#. Whenever the state of the IF
oscillator crosses some threshold, the oscillator fires
there is then a discontinuity as it resets. Although the disc
tinuous nature of the changes makes a complete descrip
in terms of ‘‘smooth’’ differential equations impossible, it i
possible to apply dynamical approaches to classify the bi
cation of IF models with a periodic reset level as tang
~saddle-node! and period-doubling bifurcations@13#.

In this paper we describe noise-induced effects on
bifurcation of an IF model in which the reset level is pe
odically modulated and, in particular, we describe the effe
obtained in the parameter regions in which period-doubl
bifurcation occurs. We start by presenting a method for c
culating the Lyapunov exponents of the model and use
method to evaluate the effects of noise on the stability of
system. We then use the spectra of a Markov operato
analyze the stochastic bifurcation in the system. Finally,
results on stochastic bifurcations are compared with num
cal computations of angles and moduli of the eigenvalues
the Markov operator that describes the firing properties
the model.

II. THE LYAPUNOV EXPONENTS OF NOISY
INTEGRATE-AND-FIRE OSCILLATORS

Consider a noisy one-dimensional nonlinear dynami
system with discontinuities in the neighborhood of the act
of a discontinuity, in particular, the system called an IF o
cillator. The noisy IF model is described by a stochastic d
ferential equation
©2002 The American Physical Society01-1
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TAKASHI TATENO PHYSICAL REVIEW E 65 021901
dX~ t !5 f „X~ t !,t…dt1sdWt , ~1!

X~0!5x0 , ~2!

wheref (x,t) is a function inC1 for x andt, the constants is
a noise intensity, andWt denotes the standard Wiener pr
cess. Furthermore, the variableX(t) must be subject to a
resetting mechanism, and this is described by

X~ tn
2![ lim

«→0
X~ tn2«!5h~ tn!,

~3!

X~ tn
1![ lim

«→0
X~ tn1«!5g~ tn!,

whereh(t) and g(t) are smooth functions inC1. In neural
models, the functions

f ~x,t !5F~x!1I ~ t ! ~4!

and

F~x!52
x

t
, ~5!

wheret is a time constant andI (t) represents an input term
are often used. The properties of the model are character
by sequences of firing times, where the firing times are
fined as

Tk5 inf$tuX~ t !>h~ t !;t>Tk21.t0 ;X~0!5x0%. ~6!

The system can thus be expressed by the following se
equations:

X~0!5x0 , ~7!

dX~ t !5 f „X~ t !,t…dt1sdWt , ~ tk21,t,tk!

~k51,2, . . .! ~8!

X~ tk
2!5h~ tk! ~k51,2, . . .!, ~9!

X~ tk
1!5g~ tk! ~k51,2, . . .!. ~10!

Müller, using an idea for the study of impact oscillato
has proposed a method for calculating the Lyapunov ex
nents of a discontinuous dynamical system@9#. Müller intro-
duced a perturbed dynamicsX̃(t) and directly calculated the
deviation between perturbed and unperturbed trajecto
First, suppose that an initial deviationDx0 between the per-
turbed and unperturbed trajectories is positive and denote
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subsequent deviations asDX(t). We then have

X̃~0!5x02Dx0 , ~11!

X̃~ t !5X~ t !2DX~ t !. ~12!

The firing times of the perturbed system are defined as

T̃k5 inf$tuX̃~ t !>h~ t !;t>T̃k21.t0 ;X̃~0!5x02Dx0%,
~13!

and the behavior of the perturbed system is governed by
following set of equations:

X̃~0!5x02Dx0 , ~14!

dX̃~ t !5 f „X̃~ t !,t)dt1sdWt , ~ t̃ k21,t, t̃ k!

~k51,2, . . .!, ~15!

X~ t̃ k
2!5h~ t̃ k! ~k51,2, . . .!, ~16!

X~ t̃ k
1!5g~ t̃ k! ~k51,2, . . .!. ~17!

If the firing times satisfy the relationst1< t̃ 1<t2 and t̃ 1
,(t11t2)/2, for instance, one obtains, for the perturbed m
tion, a first discontinuity at the time

t̃15t11Dt1 . ~18!

Similarly, for two series$tk% and$ t̃ k% (k51,2, . . . ), we can
define a time differenceDtk

Dtk5 t̃ l (k)2tk , ~19!

where t̃ l (k) is the nearest-neighboring firing time oftk in the
perturbed firing sequence.

If Dt is sufficiently small, we can apply a stochastic Ta
lor expansion to approximateX(t1Dt) in the vicinity of any
given t with an expression in the first order ofDt,

X~ t1Dt !'X~ t !1 f „X~ t !,t…Dt1sDWt , ~20!

whereDWt is the increment of the Wiener process

DWt5Wt1Dt2Wt . ~21!

From Eqs.~12!, ~16!, ~19!, and~20! we have
1-2
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05X̃~ t̃ l (k)
2 !2h~ t̃ l (k)!5X̃~ tk

21Dtk!2h~ tk1Dtk!

'X̃~ tk
2!1 f „X̃~ tk

2!,tk
2
…Dtk1sDWtk

2h~ tk!2h8~ tk!Dtk

'X~ tk
2!2DX~ tk

2!1 f „X~ tk
2!,tk

2
…Dtk1sDWtk

2h~ tk!

2h8~ tk!Dtk

52DX~ tk
2!1sDWtk

1@ f „X~ tk
2!,tk

2
…2h8~ tk!#Dtk . ~22!

The time difference

Dtk5
DX~ tk

2!2sDWtk

f „X~ tk
2!,tk

2
…2h8~ tk!

~23!
is

02190
is thus obtained. In the same way, from Eqs.~12!, ~17!, ~19!,
and ~20! we obtain

DX~ t̃ l (k)
1 !5X~ tk

11Dtk!2X̃~ tk
11Dtk!

5X~ tk
11Dtk!2g~ tk1Dtk!

'X~ tk
1!1 f „X~ tk

1!,tk
1
…Dtk

1sDWtk
2g~ tk!2g8~ tk!Dtk

5@ f „X~ tk
1!,tk

1
…2g8~ tk!#Dtk1sDWtk

. ~24!

From Eqs.~23! and ~24! we obtain
DX~ t̃ l (k)
1 !5

f ~X~ tk
1!,tk

1!2g8~ tk!

f „X~ tk
1!,tk

1
…2h8~ tk!

DX~ tk
2!1s

f „X~ tk
2!,tk

2
…2 f „X~ tk

1!,tk
1
…1g8~ tk!2h8~ tk!

f „X~ tk
2!,tk

2
…2h8~ tk!

DWtk
. ~25!
tive,
n.
For convenience, we can write this in the form

DX~ t̃ l (k)
1 !5akDX~ tk

2!1s~12ak!DWtk
, ~26!

where

ak5
f „X~ tk

1!,tk
1
…2g8~ tk!

f „X~ tk
2!,tk

2
…2h8~ tk!

. ~27!

Suppose, for example, that thekth firing of the unperturbed
system occurred at a timet between the firing timest̃ l (k) and
t̃ l (k21) of the perturbed system. ThenX(t) of Eq. ~1! is ex-
pressed by

X~ t !5X~ t̃ l (k21)
1 !1E

t̃ l (k21)
1

t

f „X~s!,s…ds1sE
t̃ l (k21)
1

t

dWs ,

~28!

where * t̃ l (k21)

t
dWs represents the Ito integral. From th

equation we know that, fort< t̃ l (k) ,
DX~ t !5DX~ t̃ l (k21)
1 !1E

t̃ l (k21)
1

t

@ f „X~s!,s…2 f ~X̃~s!,s!#ds.

~29!

For the function specified in Eq.~5!, this equation may be
simplified to

DX~ t !5exp@2~ t2 t̃ l (k21)
1 !/t#DX~ t̃ l (k21)

1 !. ~30!

From Eqs.~26! and ~30! we have

DX~ tk
2!5exp@2~ tk2tk21!/t#$ak21DX~ tk21

2 !

1s~12ak21!DWtk21
%. ~31!

We so far assumed that the deviationDx0 between the initial
values of the perturbed and unperturbed systems is posi
but Eq. ~31! also holds in the case of a negative deviatio
By applying Eq.~31! recursively, we obtain
DX~ tk
2!5ak21•••a2a1exp@2~ tk2t1!/t#DX~ t1

2!1sak21•••a2~12a1!exp@2~ tk2t1!/t#DWt1

1sak21•••a3~12a2!exp@2~ tk2t2!/t#DWt2

A

1sak21~12ak22!exp@2~ tk2tk22!/t#DWtk22
1s~12ak21!exp@2~ tk2tk21!/t#DWtk21

5S )
j 51

k21

aj D exp@2~ tk2t0!/t#FDX01s(
j 51

k21 S )
i 51

j

ai
21D ~12aj !e

(t j 2t0)/tDWt jG . ~32!

For a large integern, we can define
1-3
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ln~s,x0 ,Dx0!5
1

~ tn2t0!
lnUDX~ tn!

DX0
U

5
1

~ tn2t0!
lnUS )

j 51

n21

aj D exp@2~ tn2t0!/t#F11s (
j 51

n21 S )
i 51

j

ai
21D ~12aj !e

(t j 2t0)/tDWt j
/DX0GU

52
1

t
1

1

~ tn2t0!
lnUS )

j 51

n21

aj D F11sDx0
21(

j 51

n21 S )
i 51

j

ai
21D ~12aj !e

(t j 2t0)/tDWt jGU. ~33!
n
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Hence we can calculate a stochastic version of the Lyapu
exponentl(s,x0) proposed by Mu¨ller if there exists

l~s,x0!5 lim
Dx0→0

l~s,x0 ,Dx0!

5 lim
Dx0→0

$ lim
n→`

ln~s,x0 ,Dx0!%. ~34!

There are cases where the mapping represented byl (k) in
Eq. ~19! is not one-to-one and, in such cases, the mappin
not invertible. That is, for example, more spikes may app
along one trajectory than along the corresponding pertur
trajectory. Generally, in cases where two or more spikes
cur along the unperturbed trajectory betweent̃ k and t̃ k11,
this calculation might underestimate the Lyapunov expon
because the effects of noise on the unperturbed system
not been fully included in the process of estimation. Ho
ever, since, in the numerical simulation, the two series$tk%
and $ t̃ k8% coincide, except for a few of the earliest firin
times, actually calculating the value remains meaningful
the following section, the result of the numerical calculati
will be discussed in terms of this topic.

III. A NOISY INTEGRATE-AND-FIRE MODEL
WITH A PERIODIC RESET LEVEL

In the absence of noise, the periodic modulation of
reset level in IF models can still lead to rich dynamics.
models with periodic modulation of the reset level~or thresh-
old! are meant to mimic cells with external periodic forcin
or with internal periodic forcing such as arises in certa
types of bursting~e.g., slow wave bursting! @14#. Such
modulation of IF models is able to produce period-doubl
and saddle-node bifurcations. The period-doubling route
chaos in IF models have been numerically demonstrated
have been confirmed by directly evaluating the Lyapun
exponents of the models@13,15#. In this section we take a
particular interest in those IF models that include perio
modulation of the reset level and we show how it is possi
to numerically approximate the Lyapunov exponents in
presence of noise.

Consider a constant external input@ I (t)5I 0#, a time-
invariant threshold@h(t)51#, and a sinusoidally modulate
reset levelg(t). That is,g(t)5Asin$2p(t1u0)%, where 2pu0
(u0P@0,1#) is an initial phase of the periodic modulatio
Note that, to allow the use of dimensionless parameters
02190
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variables in the equation forg(t), the period of the rese
level has been normalized to 1 and the mean amplitude
been set to zero. Hence the parametert is the ratio of the
frequency of the periodically modulated reset level to t
firing frequency of the noiseless (s50) oscillator governed
by Eq. ~1!. From Eq.~27! we obtain

ak5
tI 02AA11~2pt!2 sin$2p~ tk1u0!1a%

tI 021
, ~35!

where

a5arctan~2pt!. ~36!

In the absence of noise, as Coombes has reported@15#, the
Lyapunov exponents of the systems are independent of
initial value or of any initial deviation, and the determinist
ln is described by

ln52
1

t
1

1

~ tn2t0! (
j 51

n

lnuaj u. ~37!

The output of the model consists of a sequence of fir
times. Figure 1~a! shows~deterministic! bifurcation diagrams
that depict the dependence of interspike intervals on the
plitude A of modulation of the reset level.

There is no fixed phase relation in the quasiperiodic ra
(0,A,0.28), so the dots are scattered throughout the in
vals. The fixed phase relations in the 1:1 mode-locked ra
(0.28,A,0.546) are presented as a single dot for eachA
value. With increasingA, the first period-doubling bifurca-
tion from period 1 to 2 and the second bifurcation fro
period 2 to 4 occur nearA50.546 andA50.640, respec-
tively. The corresponding dependence of the Lyapunov
ponent is shown in Fig. 1~b!. Since for a largen ~e.g., n
55000), the ratio ofln to ln11 is approximately equal to
1 ~i.e., uln11 /ln21u,1026), we can regardln as the
Lyapunov exponent. The Lyapunov exponent rises ab
zero nearA50.68 and tends to increase with higher valu
of A. This implies that the motion in the model is a chaosli
oscillation.

A forward Euler algorithm with a fixed step size of 0.00
time units was used in numerically calculating the no
model. However, in a numerical calculation, we are unable
obtain idealized white noise. In order to investigate the no
correlation, the autocorrelation function of the noise we us
1-4
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was calculated. This showed that our simulated noise p
vided a good approximation of white noise.

After simulating the tracks of the two trajectories wh
the initial deviationDx0 was small, we used Eq.~33! to
calculate theln(s,x0 ,Dx0) with n510 000. The numerica
calculation showed that, in a mode-locked region of para
eter space, even with a low noise level~e.g.,s50.0001!, the
two trajectories eventually coincided within a finite numb
of steps~e.g., within less thann550). The two series$tk%
and $ t̃ k8% thus coincide with the exception of a few of th
firing times early in the numerical simulation, so that t
number of spikes along the unperturbed trajectory which
not form pairs with spikes along the perturbed trajectory
limited. Thus, in the mode-locked region of the numeric
simulation, spikes from two series always form such pairs
the quasiperiodic and chaotic parameter regions, in cont

FIG. 1. ~a! A deterministic bifurcation diagram of Eq.~1! with a
periodic reset levelg(t)5Asin$2p(t1u0)% and a constant threshol
h(t)51 in the absence of noise (s50). This IF model shows the
dependence of quasiperiodic, phase-locked, and chaoslike os
tions on the amplitudeA of modulation of the reset level. The plo
is of the interspike-interval sequence$I 1000, . . . ,I 1100%, where I i

5Ti 112Ti ( i 51000, . . . ,1100), versusA. Other parameters:t
51 andI (t)[I 051.2. ~b! A plot of the Lyapunov exponent versu
the amplitudeA in the absence of noise (s50). Parameter values
of the IF model are the same as those used to obtain part~a!. The
inset is an expanded view of the plot over the interval@0.54, 0.56#.
Around A50.546 andA50.640 the Lyapunov exponents are a
proximately equal to zero and this corresponds to the per
doubling bifurcations from period 1 to period 2 and from period
to period 4, respectively. Other parameters:t51 andI 051.2.
02190
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a small amount of noise did not always result in a coin
dence between the two trajectories.

Thus, to calculate the exponential terms in Eq.~33! under
the limitations of the possible numerical ranges of comp
ers, we must, in practice, select intermediate noise intens
the trajectories coincide and the terms vanish after the c
cidence. In the numerical calculations, we included count
the number of spikes that do not form pairs with one mem
in the unperturbed trajectory and one in the perturbed tra
tory. For example, for the range of quasiperiodic behav
~e.g.,A50.27) the average numbers of nonmatching spi
resulting from 1000 realizations of the Wiener process w
0.24460.437 ~mean6 standard deviation! and zero when
s50.05 and s50.001, respectively. The correspondin
numbers for the parameter range~e.g., A50.75) that pro-
duces chaotic behavior were 0.6460.553 and 2.0561.46
whens50.05 ands50.001, respectively. One order reve
sal of appearance of the respective elements of the pair

the two firing time-series$tk% and $ t̃ k8% creates no problem
for this calculation because we are still able to find the sp
of one series corresponding to that of the other. Howe
when two or more reversals of order in the firing times of t
two series occur, it may not be possible to find some spi
along one trajectory which correspond to spikes along
other trajectory. In such cases, the Lyapunov exponents
underestimated by this numerical calculation, as was sta
in the preceding section.

We selected various initial deviations (Dx0) from 0.0001
to 0.01 and various initial values (x0) from the interval@0,1#
and calculated the resulting values ofln(s,x0 ,Dx0). With
these deviations and initial conditions, the numerical cal
lation brought no significant difference of the values ofln ,
so that the results remained unchanged. The averag
ln(s,x0 ,Dx0) (s50.005, 0.01, 0.02, and 0.03! calculated
for 1000-times realization of the Wiener process is plot
againstA in Fig. 2~a!, where the error bars show the standa
deviation. Overall, for larger noise intensities~e.g.,s>0.03!
the Lyapunov exponents are larger in the presence of n
than in the absence of noise. In general, the stability o
system can be characterized by the largest Lyapunov e
nent. One can thus see that noise decreases the stabili
the IF model in the sense that the~negative! Lyapunov ex-
ponent increases and crosses zero as the noise inte
increases.

However, at intermediate noise levels, the dependenc
the Lyapunov exponent on the noise intensities is marke
affected by the way the oscillator behaves. Figure 2~b! shows
plots of the average of the Lyapunov exponents~ALEs! as a
function of noise intensity and shows different nois
intensity dependences for the three typical behaviors of
IF model: oscillations that are chaoslike (A50.75), mode
locked (A50.47), and quasiperiodic (A50.25). When noise
is added to the deterministic IF model while it is in th
region of the chaoslike oscillation, the ALE falls gradually
the noise intensity increases. As the noise intensity increa
while the model is in the region of mode-locked oscillatio
however, the ALE first decreases and then increases.
means that increasing the noise intensity beyond a cer

lla-

-

1-5
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TAKASHI TATENO PHYSICAL REVIEW E 65 021901
value leads to ‘‘destabilization’’ of the system. As the noi
intensity increases, while the model is in the region of q
siperiodic oscillation, the ALE first increases to a maximu
value and then falls. This means that increasing noise in
sity leads to ‘‘stabilization’’ of the system. The plot als
shows that, in chaoslike and quasiperiodic oscillations,
fluctuations inln are larger at small noise intensities (s
,0.01) than at larger noise intensities.

IV. SPECTRAL ANALYSIS OF A MARKOV OPERATOR

In the preceding section, the index~Lyapunov exponent!
as numerically calculated from the series of firing times h
been dealt with in order to determine the property of stabi
of the IF model. However, from the direct numerical calc
lation, we can only have realizations of such series. In

FIG. 2. ~a! Lyapunov exponentln versus amplitudeA for n
510 000 in the presence of noise. The curves show average
1000-times realization of the standard Wiener process, and e
bars show the standard deviation.s50, 0.005, 0.01, 0.02, and 0.03
These plots correspond to the deterministic plot given in Fig. 1~b!.
Other parameters:t51, I 051.2, Dx050.001, andx050. ~b!
Lyapunov exponentln versus the noise intensitys for n510 000.
The curves show averages for 1000-times realization of the s
dard Wiener process, and the error bars show the standard d
tion. A50.25 ~squares!, 0.47 ~circles!, and 0.75~triangles!. In the
case ofA50.47, the standard deviations ofln are so small that we
are unable to see the error bars clearly in the scale, but the si
the vertical lines are given in the labels of the circles in the p
Other parameters:t51, I 051.2, Dx050.001, andx050.
02190
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section, another approach is used. That is, since the fi
times are random variables, we can use a stochastic appr
to characterize the sequence of firing times.

When X(0)5g(0), the time Tu0
at which X(t) reaches

the thresholdh for the first time is called the first-passag
time

Tu0
5 inf$tuX~ t !>h~ t !;X~0!5g~0!%. ~38!

The time Tu0
has a probability density function~PDF!

G„h(t),tuu0… which satisfies the following equation@16#:

p~x,tug~0!,0!5E
0

t

G„h~u!,uuu0…p„x,tuh~u!,u…du,

@x>h~ t !,h~ t !.g~ t !#, ~39!

where p(x,tuy,s) is the transition PDF of the unrestricte
processX(t) and satisfies the following Fokker-Planck equ
tion @16#:

]p

]t
52

]

]x F H 2
x

t
1I J pG1

1

2
s2

]2p

]x2
. ~40!

Since the initial phaseu0 completely determines the tim
course of the reset level in a PDF of the formG(h(t),tuu0),
if we useG(tuu0) to denote the PDF and define

f ~uuu0!5 (
n50

`

G~n1u2u0uu0!, ~41!

then the convergence of the right-hand side of Eq.~41! is
ensured@17#. The function f (uuu0) satisfies*0

1f (uuu0)du
51 and f (uuu0)>0 ~i.e., the PDF! and is the PDF of the
next firing phase given a previous firing phase ofu0. Let
hn(u)(0<u,1) be the PDF of the reset-level phase at t
time of the nth firing (n51,2, . . . ). Then, hn(u) can be
expressed by the following equation:

hn~u!5E
0

1

f ~uuu0!hn21~u0!du0

[Phn21~u!~n51,2, . . .!, ~42!

whereh0 is the PDF of the initial phaseu0. That is, it satis-
fies *0

1h0(u0)du051 and h0(u0)>0. The operatorP is a
Markov operator with the kernelf (uuu0). We can inductively
obtainhn by iteratively applying the operatorP to the PDF
h0, and $Ph0% is asymptotically stable@18,19#. There thus
exists a unique invariant densityh* such thatPh* 5h* @20#.
The PDF of the interspike interval between thenth and (n
11)th spikes, denoted byi n , is given by

i n~ t !5E
0

1

G~ tuu!hn21~u!du ~n51,2, . . .! ~43!

and the invariant interspike-interval PDFi * (t) then satisfies
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i * ~ t !5E
0

1

G~ tuu!h* ~u!du. ~44!

Since the evolutionary properties of the sequence$hn%
defined by Eq.~42! are governed by the operatorP, the
kernel f (uuu0) has all the information needed to describe t
evolution of the system’s dynamical behavior. The opera
P is linear and its eigenvalues and the corresponding eig
functions play a prominent role in determining the behavi
of the sequence$hn%. Here, as usual, the eigenvalues a
defined as the set of complex numbersl for which there
exists a nontrivialh such thatPh5lh. Moreover, in general,
a spectrum of the operatorP is defined as the set of comple
numbersl such thatP2lI is not invertible, whereI is the
identity operator. However,P is an infinite-dimensional op
erator, so that it is possible for its spectrum to be an infin
set that, strictly, contains infinitely many eigenvalues. Ne
ertheless, the eigenvalues ofP satisfy ulu<1, while l51 is
itself an eigenvalue. Furthermore, when infu f (uuu0).0,ulu
,1 for all eigenvalues that are not one. To analyze the sp
tral properties of the kernel, we used a numerical calcula
of the first-passage time of the Ornstein-Uhlenbeck proc
X(t) rather than numerically solving the stochastic differe
tial equation of Eq.~1! @21#. This approach enabled us t
evaluate the precise structure of the kernel within the lim
on the accuracy of the numerical calculation.

Even though the operatorP is of infinite dimension, ap-
proximate values for some of the eigenvalues of an oper
similar to P were estimated by replacingP with a finite-
dimensional square matrix that we obtained by discretiz
the phasesu0 and u. In numerical calculation, the kerne
corresponds to the stochastic~transition probability! matrix
denoted by a realM3M square matrixAM . To investigate
the characteristics of the kernel, we applied spectral anal
to the stochastic matrix@18#. Another numerical method fo
calculating the spectrum of an operator similar toP has been
proposed~for those readers who are interested in this subj
see Ref.@22#!, but the stochastic matrix is used here. Sin
AM is a stochastic matrix and is irreducible, the first eige
value of the matrix also satisfiesl151 @23# and there is an
eigenfunction~a characteristic vector! that has positive coor
dinates and corresponds tol1 @19#.

Suppose that the eigenvalues$l i% ( i 51,2, . . . ,) ofP are
sorted in descending order according to their moduli. Ifl i
( i>2) is complex, we can use the imaginary unitj and de-
note the eigenvalues asl i5r i exp(j2pvi). Let ei(u) be the
corresponding eigenfunction ofl i . Then, applying the op-
eratorP to the eigenfunctionei k times, we have

P kei5l i
kei5r i

k exp~ j 2pkv i !ei ~k51,2, . . . !.
~45!

Note that the first eigenfunctione1 is in accordance with an
invariant densityh* andl151.

Figure 3 shows the invariant interspike-interval dens
@ i * (t)# diagram obtained from Eq.~44! for a noise intensity
(s50.005) corresponding to the deterministic bifurcati
diagram plotted in Fig. 1~a!. The invariant density„h* (u)…
was calculated by finding the characteristic vector that c
02190
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responds to the eigenvaluel151 from the stochastic matrix
AM of size M5100. From Eq.~45!, we can see that the
speed at which the sequence$hn% converges to its invarian
density is determined by the eigenvalues other than the
(l151). In practice, 2000 iterations@i.e., applying the op-
erator to any initial phase densityh0(u) 2000 times# seemed
to be enough to numerically obtain a function that was
proximately equal to the invariant densityh* or e1. Since
several of the subsequent eigenvalues, i.e., those other
the first (l2 , . . . ,l5), play an important role, we need to pa
particular attention to the lower-order eigenvalues.

Figure 4 shows moduli (r 2 , . . . ,r 5) and angles
(2pv2 , . . . ,2pv5) of the second to fifth eigenvalue
(l2 , . . . ,l5) plotted against the amplitudeA of the reset
level for a fixed noise intensity (s50.002). Neark50.52
@markedB1 in Fig. 4~b!# angles of the second eigenvalu

FIG. 3. ~a! Invariant interspike-interval density@ i * (t)# diagram
for a noise intensitys50.005. The invariant~phase! density
@h* (u)# was first calculated by finding the characteristic vector t
corresponds to the eigenvaluel151 from the stochastic matrixAM

of size M5100. Then, the interspike-interval density was calc
lated from Eq.~44!. This diagram corresponds to the determinis
bifurcation diagram shown in Fig. 1~a! in that t51 and I 051.2.
Interspike-interval densities are plotted versusA for each of 90A
values that are equally spaced on the interval@0.05, 0.95#. ~b! Ex-
panded view of the diagram in the region whereA ranges from 0.5
to 0.8.
1-7
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change from 2p to p rad. That is,l25r 2 exp(jp) and the
relation

P 2e25l2
2e25r 2

2 exp~ j 2p!e25r 2
2e2 ~46!

holds. Near that point, angles of the third, fourth, and fi
eigenvalues also change fromp to 2p rad, but the change in
the angle of the fifth eigenvalue seems similar to that of
second. This implies that the first period-doubling bifurcati
~period 1 to period 2! occurs in a stochastic sense. For t
range beyond that point, each invariant interspike-inter
density function has the similar two-peak topological stru
ture which is shown in Fig. 3~b!. In the absence of noise
moreover, we are able to observe the second period-doub
bifurcation nearA50.640 ~cf. Fig. 1!. Whereas we are un
able to see a change in the angles of the second to fo
eigenvalues with increasingA in the range 0.57,A,0.67,
the angle of the fifth eigenvalue only shows changes for v
ues beyondA50.615. Thus, whenA increases, the propert
related to period four first emerges in the parameter ra
0.645,A,0.665 @the narrow hatched range markedB3 in
Fig. 4~b!#. In that range, angles of the fifth eigenvalue a
3p/2 rad. That is,e55r 5 exp(j3p/2). So the relation

FIG. 4. ~a! Moduli of the second to fifth eigenvalue
(l2 , . . . ,l5) of the kernelf (uuu0) versus the amplitudeA of the
reset level.~b! Angles of the second and fifth eigenvalues versus
amplitude A. Matrix size M5100. Other parameters:s50.002,
t51, andI 051.2.
02190
e

l
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ng

rth
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e

P 4e55l5
4e55r 5

4 exp~ j 6p!e55r 5
4e5 ~47!

holds. This implies that the second period-doubling bifurc
tion ~period 2 to period 4! occurs in a stochastic sense. I
stead of using the second eigenvalue as the definition of
stochastic period-doubling bifurcation@18,19#, it is natural to
use the fifth eigenvalue to define the stochastic bifurcati
Here, we refer to the point at which angles of the fifth eige
value change from 2p to p rad as the stochastic period
doubling bifurcation point that marks the change from per
1 to period 2.

The deterministic first period-doubling bifurcation poi
~i.e., the first point of bifurcation in the absence of noise! and
dependence of the corresponding stochastic period-doub
points on noise intensity is shown in Fig. 5. In the figure, t
points at which angles of the second eigenvalue change f
2p to p rad are also plotted and referred to as pointsB1 in
the remainder of this description. The stochastic bifurcat
point and pointB1 monotonically increase as the noise inte
sity increases and both suddenly disappear at arouns
50.012. Over that value (s50.012) there are no change
from 2p to p rad of angles of the second and the fif
eigenvalues. Instead, the angle remains 2p rad @cf., Fig.
4~b!#. In the definition here, therefore, the stochastic bifurc
tion point within a small range above zero of noise intens
@i.e., lims→0 l(s,x0 ,Dx0)] seems to be in accord with th
deterministic bifurcation point. Figure 5 shows, howev
that if we use the second eigenvalue to define the stocha
period doubling, the alternative bifurcation point~i.e., point
B1) with a small range above zero of the noise intensity
not in accord with the deterministic bifurcation point.

V. DISCUSSION

This paper has concentrated on the interplay between
terministic and stochastic properties of the IF oscillator
those parameter regions where mode-locking, quasiperio

e

FIG. 5. Point at which the first period-doubling bifurcation fro
period 1 to period 2 takes place (s50, circle! and the correspond
ing stochastic bifurcation points~squares!, versus noise intensities
in the s-A plane. The points at which angles of the second eig
value change from 2p to p rad ~referred to as pointsB1 ,3) are
also plotted. Other parameters:t51 andI 051.2.
1-8
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and chaoslike oscillations are observed. We started by sh
ing that, at intermediate levels of noise, the dependenc
the Lyapunov exponents on noise intensities is markedly
fected by the way the oscillator behaves. Thus, the effect
noise on the stability of the model depend on both the no
intensity and the type of oscillation.

We then paid special attention to the effects of noise
the period-doubling route to chaos. When a period-doub
cascade occurs in a chemical reaction@24# or a biological
system@25#, only the first few period-doubling bifurcation
are observable because the fine structure of the later bifu
tions can be masked by noise. Since period-doubling bi
cations are characteristic of nonlinear dynamical systems
the noise effects reported on here are therefore observed
wide range of other nonlinear systems, our results provid
quantitative measure of the effect of noise on nonlinear s
tems.

The study of ‘‘qualitative changes’’ in parametrized fam
lies of random dynamical systems is in general called ‘‘s
chastic bifurcation theory’’@2#, and recent studies of random
dynamical systems have shed light on a dynamical aspe
stochastic bifurcation. In this context, the largest Lyapun
exponent in the presence of noise is used as an index
characterizes the stochastic bifurcation on the basis of
existence of multiple invariant measures. However, in the
model reported on here, there is only one invariant meas
so that there is no bifurcation in the sense in which the te
is used in Ref.@2#.

Another definition of stochastic bifurcation is based
the topological structure of invariant densities, and such
furcation is referred to as phenomenological bifurcation.
shown in Fig. 3~b!, when the noise intensity is low, the to
pological structure of the plot of the invariant interspik
interval density function on the interval-A plane gradually
changes with increasingA: the plot changes from that of
function with one peak to that of the one with two peaks.
this phenomenological bifurcation, however, we are una
to find an abrupt change as that seen in a deterministic
gent and period-doubling bifurcations@cf. Fig. 1~a!#. In con-
trast, the definition in the present study allows us to find
clear change of characteristics in this model by using
Markov operator that governs the transition of a reset-le
phase density to evaluate a stochastic version of the bifu
tions.

There might be no discrepancy between the stocha
period-doubling bifurcation point within a small range abo
zero of noise intensity and the corresponding bifurcat
point in the absence of noise~cf. Fig. 5! when we use the
l
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fifth eigenvalues of the stochastic matrix in this definitio
However, if we use the second eigenvalues to define
stochastic bifurcation points, we have a discrepancy betw
the stochastic bifurcation point and the corresponding de
ministic bifurcation point. For example, the results of t
noisy IF model show that, with an intermediate noise inte
sity ~e.g.,s50.01 in Fig. 5!, the first period-doubling bifur-
cation points~i.e., theB1 points!, as defined by using the
second eigenvalues, coincides with the corresponding b
cation point of the noiseless IF model. As we have alrea
reported in the previous paper@26#, this discrepancy does no
arise in the tangent~saddle-node! bifurcations of the noisy IF
models. That is, even though the stochastic bifurcation
defined by using the second eigenvalues, the tangent b
cation point of the noisy IF model approaches the cor
sponding tangent bifurcation point of the noiseless IF mo
when the noise intensity is sufficiently low.

Inoue et al. have already pointed out a similar proble
and shown the difference between the stochastic tangent
period-doubling bifurcation points that appears when
method that uses the spectra of a Markov operator is app
to a noisy sine-circle map@27#. They report that, if the sto-
chastic period-doubling bifurcation point from period 1 to
is defined as the point at which the angle of the second
genvalue changes from 0 top rad, the definition does no
work well within a small range above zero of noise intensi
Instead, they define the value of the bifurcation paramete
which the third eigenvalue takes it maximum as the peri
doubling bifurcation point from period 1 to period 2. Whil
the definition of the stochastic period-doubling bifurcati
point presented in this paper differs from their definitio
their results show that the higher-order eigenvalues also h
information that explains the stochastic period-doubling
furcation. The method presented in this paper has thus b
to analyze the eigenvalues and eigenfunctions of the Mar
operator of the IF model. The first eigenfunction, which co
responds to the first eigenvaluel151, has static information
such as an invariant density. In contrast, the results of
work show that the higher-order eigenvalues and eigenfu
tions have dynamic information that characterizes the s
chastic bifurcation defined here.
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